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Menkes disease (MD) is a copper-deficient neurodegenerative disorder that manifests severe neurologic
symptoms such as seizures, lethargic states, and hypotonia. Menkes disease is due to a dysfunction of
ATP7A, but the pathophysiology of neurologic manifestation is poorly understood during embryonic
development. To understand the pathophysiology of neurologic symptoms, molecular and cellular
phenotypes were investigated in Menkes disease-derived induced pluripotent stem cells (MD-iPSCs).
MD-iPSCs were generated from fibroblasts of a Menkes disease patient. Abnormal reticular distribution
of ATP7A was observed in MD-fibroblasts and MD-iPSCs, respectively. MD-iPSCs showed abnormal mor-
phology in appearance during embryoid body (EB) formation as compared with wild type (WT)-iPSCs.
Intriguingly, aberrant switch of E-cadherin (E-cad) to N-cadherin (N-cad) and impaired neural rosette for-
mation were shown in MD-iPSCs during early differentiation. When extracellular copper was chelated in
WT-iPSCs by treatment with bathocuprione sulfate, aberrant switch of E-cad to N-cad and impaired neu-
ronal differentiation were observed, like in MD-iPSCs. Our results suggest that neurological defects in
Menkes disease patients may be responsible for aberrant cadherin transition and impaired neuronal dif-
ferentiation during early developmental stage.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Menkes disease (MD) is characterized as an inherited form of
copper deficiency [1,2]. For this reason, Menkes disease has been
studied for the past three decades as a disease model to under-
stand the role of copper in the human nervous system [3]. Menkes
disease is an infantile-onset X-linked recessive neurodegenerative
disorder caused by dysfunction of a copper-transporting ATPase,
ATP7A [4–6]. ATP7A dysfunction results in diminished copper up-
take, thereby leading to a copper deficient state in a patient’s body
[7,8]. The clinical manifestation of Menkes disease reflects de-
creased activities of enzymes that require copper as a cofactor,
including dopamine-b-hydroxylase, cytochrome c oxydase, and
peptidylglycine-a-amidating monooxygenase [9]. Among a wide
spectrum of clinical manifestations caused by dysfunction of cop-
per-requiring enzymes, neurologic symptoms are closely related
with mortality and morbidity in Menkes disease patients. Infants
born with Menkes disease begin to exhibit failure to thrive and
developmental delay within several months after birth. Affected
infants gradually manifest neurologic impairments (e.g. hypotonia,
lethargic states and seizures), and usually die within 3 years of
birth [10]. Treatment of choice, intravenous copper histidine injec-
tion, has shown to reduce the seizure susceptibility and hyperto-
nicity in some patients [11,12]. However, even under ideal
circumstance, Menkes disease infants treated with copper histi-
dine exhibits suboptimal clinical outcomes [10]. To understand
the pathophysiology of Menkes disease, ATP7A knockout mouse
models have been used [13–15]. ATP7A knockout mice showed
deficiency of olfactory sensory neuronal maturation during early
neuronal development [13]. Expression of genes involving myeli-
nation, energy metabolism and translation was downregulated in
cerebral cortex and cerebellum tissues of a Menkes disease patient
[16]. Despite various pathologies in neuronal tissues in knockout
mice and human cadavers, how the copper-deficient environment
caused by ATP7A mutation affects neurologic manifestation in
Menkes disease patients is poorly understood. Recently, it has been
reported that human induced pluripotent stem cells (iPSCs) are
useful systems to study mechanisms on human diseases during
early development in organogenesis because of their differentia-
tion capability into diverse cell types [17,18]. Here, we found that
MD-iPSCs exhibited an aberrant switch of E-cad to N-cad and
abnormal neural rosette formation during early differentiation.
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Furthermore, MD-iPSCs were impaired in the structural integrity,
including membrane recruitment and microdetachment, in the cell
to cell junction. Knockdown of ATP7A expression did mimic cellu-
lar phenotypes of MD-iPSCs. Our findings demonstrate molecular
and cellular aberrancies in MD-iPSCs. This study provides novel in-
sights for understanding neurological pathophysiology in Menkes
disease.
2. Materials and methods

2.1. Clinical history of a Menkes disease patient

We obtained fibroblasts from a 5 year old boy that was diag-
nosed as Menkes disease at 4 months after birth. Menkes disease
patient’s fibroblasts were obtained from Asan Medical Center un-
der a protocol approved by the institutional review board. The pa-
tient had severe neurologic symptoms such as lethargic state and
seizure (Table 1). Detailed clinical data were previously published
[19]. He had a defective ATP7A gene in which G was changed to A
on 4005th nucleotide of cDNA sequence (Fig. 1A).

2.2. Generation of induced pluripotent stem cells (iPSC) from a Menkes
disease patient

Human iPSCs were generated from human skim fibroblasts
(CRL-2097) and dermal fibroblasts of a Menkes disease patient by
ectopic expression of OCT4, SOX2, KLF4, and C-MYC as previously
described [20]. They were maintained on Mitomycin C (Sigma–
Aldrich, St. Louis, MO)-treated mouse embryonic fibroblasts in
the ESC medium at 37 �C. The embryonic stem cell medium con-
sisted of DMEM-F12 (Invitrogen, Carlsbad, CA) supplemented with
20% serum replacement (Invitrogen), 1% NEAA (Invitrogen), 1%
Penicillin–streptomycin (Invitrogen), 0.1 mM 2-mercaptoethanol
(Sigma–Aldrich), and 4 ng/ml bFGF (Invitrogen).

2.3. Embryoid body (EB) formation and neuronal differentiation

Human iPSC colonies were divided into small pieces of approx-
imately 5.5 mm � 5.5 mm squares by using McIlwain tissue chop-
per (Mickle Engineering, Westbury, NY), and then treated with
10 mg/ml dispase (Invitrogen) for 5 min to detach. Detached
clumps were cultured in bFGF-free embryonic stem cell medium
containing 10% SR for 7 days. Suspended EBs were attached on
Matrigel™ (BD Bioscience, Bedford, MA)-coated dishes and then
cultured in the same medium for 7 days. For neural rosette forma-
tion, spontaneous differentiation and directed neuronal differenti-
ation were used as depicted in Supplementary data 3. For
spontaneous differentiation, EBs were cultured for 7 days and
attached on Matrigel-coated dishes. Attached EBs were cultured
in the same medium for 7 days. For directed differentiation, we
cultured EBs for 4–5 days and attached to Matrigel-coated dishes.
Then, the cells were cultured in neuronal differentiation medium
(DMEM/F12 + 20 ng/ml bFGF + N2 supplement) for 5–7 days.
Table 1
Clinical and molecular datas from Menkes disease with ATP7A mutation.

Family data Age 5 years
Sex M

Clinical data Initial onset 4 months
CNS Seizure, lethargic state
NM Hypotonia
Other Brittle hair

Genetic data Nucleotide chages c4005 + G > A
Protein alteration Exon 20 skipping

NM = neuromuscular.
2.4. RNA isolation and real time PCR analysis

Total RNAs were extracted from cells using the TRIzol Reagent
(Invitrogen), and reverse-transcribed using M-MLV Reverse Trans-
criptase (Enzynomics, Daejeon, Korea) according to the manufac-
turer’s protocol. Relative expression levels of genes were
measured by real-time RT-PCR using 2� Prime Q-Master Mix
(GENET BIO, Seoul, Korea) and analyzed with an iCycler iQ5 Real-
Time detection system (Bio-Rad Laboratories, Hercules, CA). The
primers used are listed in Supplementary Table 1. The reaction
parameters for real-time RT-PCR were 95 �C for 10 min followed
by 40 cycles of 95 �C for 30 s, 60 �C for 30 s, and 72 �C for 30 s,
and a final elongation step at 72 �C for 5 min. For comparative anal-
yses, mRNA expression levels were normalized to GAPDH and then
expressed as fold-change. The sample DCt (SDCt) value was calcu-
lated from the difference between the Ct values of GAPDH and the
target genes. The relative gene expression levels between the sam-
ple and control were determined using the formula 2�(SDCt�CDCt).

2.5. Immunocytochemistry

Cells were grown on a 4-well cell culture slide (SPL lifescience,
South Korea), fixed with 4% formaldehyde at 4 �C for 30 min, per-
meabilized with 0.1% triton X-100 in PBS, and blocked with 4% nor-
mal donkey serum (Cell Signaling Technologies, Beverly, MA) or 3%
BSA (Sigma–Aldrich) for 1 h at room temperature (RT). Subse-
quently, antibodies against E-cadherin (1:100), N-cadherin
(1:100), NESTIN (1:200), SOX2 (1:200), TUJ-1 (1:200), MAP2
(1:200) were incubated with the prepared cells at 4 �C overnight.
Finally, cells were washed several times with PBST (0.1% Tween-
20 in PBS) and incubated with Alexa Fluor 488- or cy3-conjugated
secondary antibodies (Invitrogen). Fluorescence was analyzed
using fluorescence microscope (Olympus, Japan) or a Zeiss LSM
510 confocal microscope (Carl Zeiss, Germany). Number of N cad-
herin+/Sox2+ neural rosettes were counted per each well and sta-
tistically analyzed by a Mann–Whitney test.

2.6. Western blot analysis

Harvested cells were re-suspended in EBC lysis buffer (50 mM
Tris–HCL8.0, 300 mM NaCl, 0.5% NP40) containing 100 lg/ml lyso-
zyme, 10 lg/ml aprotininm and 10 lg/ml leupeptin. (Sigma–
Aldrich). The cells in suspension were lysed by three–five cycles
of sonication for 1 s on ice. After sonication, lysates were centri-
fuged at 16,100�g for 5 min at 4 �C. Protein concentration was
determined by using Brad-ford assay. All sample preparations were
diluted in 1� SDS loading buffer (60 mM Tris–HCl pH 6.8, 25% glyc-
erol, 2% SDS, 14.4 mM b-mercaptoethanol, 0.1% bromphenol blue)
and boiled for 2–3 min. Proteins were separated on 10% SDS–PAGE
gel, high molecular weight protein (over 100 kDa) were separated
on 6% SDS–PAGE gel respectively, and then transferred to the nitro-
cellulose membrane. After blocking with 4% of skim milk or 5%
BSA, membranes were incubated with antibodies at 4 �C overnight,
respectively. After washing with TBST, membranes were incubated
with horseradish peroxidase-conjugated second antibodies in TBST
containing 4% skim milk for 1 h. Quantitative Imaging of blots by
ECL chemi-luminescence was detected with Fujifilm LAS4000
CCD camera system (Fugifilm, Japan).

2.7. Antibodies and reagent

Primary antibodies used in this study were anti-vimentin rat Ab
(R&D systems); anti-E-cadherin mouse Ab and anti-N-cadherin
mouse Ab (BD Transduction Laboratories, Lexington, KY); anti-
Snail and anti-slug rabbit Ab and anti-SOX2 rabbit Ab (Cell Signal-
ing Technologies); anti-Nestin mouse Ab (Chemicon, Temecula,
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CA); anti-b III tubulin rabbit Ab (Abcam, Cambridge, MA). For E
cadherin and N cadherin co-staining anti-E cadherin rat (Abcam)
was used. For immunoblot of ATP7A, anti-ATPA mouse Ab (Abcam),
for immunostaining of ATP7A localization, anti-ATP7A rabbit Ab
(Hycult Biotechnology, Uden, Netherland) were used. Copper che-
lating agent, bathocuprione sulfate (BCS) was purchased from Sig-
ma–Aldrich and dissolved according to the manufacturer’s
protocol.
2.8. Measurement of intracellular copper concentration

Total cell lysates of fibroblasts, iPSCs and iPSCs-derivatives were
prepared in acid-washed plastic labware and digested in a mixture
of 2 ml of 65% HNO3 (Ultrex, JT Baker), and 7 ml deionized water.
Prepared samples were wet mineralized in a START D microwave
oven (Milestone Inc., Monroe, CT, USA) for 4 h at 150 �C. Copper
levels were then analyzed by inductively coupled plasma (ICP)
mass spectrometry (Agilent Technologies, Waldbronn, Germany).
3. Results

3.1. Characterization of mutations of ATP7A in MD-iPSCs

Characterization and pluripotency of MD-iPSCs were analyzed
(Supplementary data 1). MD-iPSCs had a typical morphology with
normal karyotype and expressed ES-specific markers. Promoters of
pluripotent genes such as OCT4, REX1 and NANOG were epigeneti-
cally reprogrammed in MD-iPSCs like in hESCs. Furthermore,



Table 2
Copper concentrations in fibroblasts and iPSCs.

WT (ppb) Menkes disease (ppb)

Copper concentration in fibroblasts 23.7 ± 15.0 63.5 ± 8.9
Copper concentrations in iPSCs 11.0 ± 4.0 13.4 ± 1.9

ppb = parts per billion (ng of copper/mg of protein).
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MD-iPSCs formed teratomas after subcutaneous injection into
nude mice. MD-iPSCs and MD-fibroblasts showed missense muta-
tion (Fig. 1A) resulting in skipping of exon 20 (Fig. 1B). Mutation
site was located in ATP-binding domain (Fig. 1C). Cultured MD-
fibroblasts showed a higher intracellular copper concentration
than wild type (WT)-fibroblasts, whereas copper concentrations
of MD-iPSCs were similar to that of WT-iPSCs (Table 2). Expression
level of ATP7A was decreased in MD-fibroblasts and MD-iPSCs
compared to the controls, respectively (Fig. 1D). ATP7A molecules
were intensively located around the perinuclear region within
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tures at 7 day of suspension culture compared with WT-iPSC-
derivatives (Fig. 2A, left). Attached cells from MD-iPSC-derived
EBs had epithelial morphology, unlike WT-iPSC-derivatives
(Fig. 2A, right). From these results, it was hypothesized that
MD-iPSCs might be impaired in an early differentiation process.
To address this question, expression of E-cadherin (E-cad) and
N-cadherin (N-cad), which are associated with the commitment
of differentiation from a pluripotent state [21], were examined.
During in vitro differentiation via EB formation, transcriptional lev-
els of E-cad were retained in MD-iPSC-derivatives and gradually
decreased in WT-iPSC-derivatives. Also, increase of N-cad tran-
scripts was not significant in MD-iPSC-derivatives compared to
WT-iPSC-derivatives (Fig. 2B). This disparity was also observed at
the protein level (Fig. 2C). Cadherin molecules are regulated by
various signaling pathways such as EMT pathway and play an
important role to maintain the cell-to-cell junction in epithelial
cells. To determine whether this abnormal cadherin switch was af-
fected by epithelial–mesenchymal transition (EMT), expression of
Snail and Slug was investigated at RNA and protein levels (Supple-
mentary data 2). The results demonstrated no correlation of cad-
herin switch and EMT in MD-iPSCs during early differentiation.
Next, it was investigated whether this cadherin switch failure
influences determination of the cell fate. Intriguingly, transcription
of neuroectodermal genes PAX6 and SOX1 was inactivated in MD-
iPSCs during spontaneous differentiation as compared with WT-
iPSCs (Fig. 2D). In contrast, transcripts of mesodermal (T and
EOMES) and endodermal genes (SOX17 and GATA4) were enriched
in MD-iPSC-derivatives at 14 day of differentiation (Fig. 2E). These
results suggest that abnormal switch of E-cad to N-cad may affect
the cell fate determination to neuroectodermal lineage during
in vitro differentiation.

3.3. A paucity of neural rosette formation in MD-iPSCs

MD-iPSCs were differentiated to neurospheres by two methods
of spontaneous and directed differentiation (Supplementary data
3). Unlike in WT-iPSCs, N-cad was not expressed in neurospheres
spontaneously and directly differentiated from MD-iPSCs (Fig. 3A
and B, respectively), thereby resulting in shapes of empty rosette
lumens. MD-iPSCs also showed lower expression of NESTIN and
aberrant rosette lumens during neurosphere development (Sup-
plementary data 4). In addition, the number of N-cad+/SOX2+ neu-
ral rosettes was significantly decreased in MD-iPSCs compared to
WT-iPSCs in respective differentiation methods (Fig. 3C). Tran-
scriptional activation of early neuronal genes (PAX6, SOX1, and
OTX2) was not induced in MD-iPSCs during directed neuronal dif-
ferentiation (Fig. 3D). Subsequently, MD-iPSCs could not differenti-
ate into the MAP2- and TUJ-1-expressing neurites (Fig. 3E). Next
experiments were performed to examine the differentiation poten-
tial of MD-iPSCs into cell types of other developmental lineages
such as the mesoderm and endoderm. As results, MD-iPSCs differ-
entiated into smooth muscle cells (Supplementary data 5) and
hepatocytes (Supplementary data 6). These results clearly indicate
that the aberrant switch of E-cad to N-cad might impair determi-
nation of neuronal lineage in the Menkes disease.

3.4. Effects of copper deficiency on neuronal differentiation of WT-
iPSCs

To clarify whether the aberrant switch of E-cad to N-cad in
MD-iPSCs be due to copper deficiency, WT-iPSCs were treated with
a copper chelator, bathocuprione sulfate (BCS), throughout differ-
entiation via EB formation for 14 days. Like MD-iPSC-derivatives,
surprisingly, BCS-treated EBs became opaque and compact in
appearance and showed epithelial shapes in the attached culture
(Fig. 4A). Also, switch of E-cad to N-cad did not occur in BCS-
treated EBs during differentiation (Fig. 4B). Like in MD-iPSCs,
transcription of neuroectodermal genes (PAX6 and SOX1) were
downregulated whereas expression profiles of mesodermal genes
(T and EOMES) and endodermal genes (SOX17 and GATA4) were
similar in BCS-treated EBs during differentiation compared with
non-treated EBs (Fig. 4C). When WT-iPSCs were treated with a cop-
per chelator during neuronal differentiation, BCS-treated neuro-
spheres did not express N-cad (Fig. 4D), thereby making empty
rosette lumens. Number of N-cad+/SOX2+ neural rosettes signifi-
cantly decreased in BCS-treated samples derived by both differen-
tiation methods (Fig. 4E, p < 0.001). mRNA levels of early neuronal
marker genes (PAX6, SOX1, and OTX2) were low in BCS-treated
samples compared to WT-samples (data not shown). This result
indicates that copper is essential for the switch of E-cad to N-cad
in human iPSCs during neural differentiation. Thus, we found that
copper chelation gave rise to the aberrant cadherin switch and im-
paired neural rosette formation in WT-iPSCs during early differen-
tiation, recapitulating in vitro phenotypes of MD-iPSCs. These
results suggest that dysfunction of ATP7A and/or copper deficiency
lead to aberrant cadherin switch, eventually resulting in defective
early neuronal development in Menkes disease.
4. Discussion

Here, we demonstrate for the first time aberrant molecular and
cellular phenotypes in terms of the cadherin switch and neural ro-
sette formation in MD-iPSCs during neuronal differentiation. The
cadherin switch is known to play critical roles in normal embry-
onic development and organogenesis [22]. A transition of E-cad
to N-cad occurs in hESCs during spontaneous differentiation [21].
But, MD-iPSCs exhibited abnormal cadherin switch at the tran-
scriptional and protein levels during early differentiation (Fig. 2).
Furthermore, this aberrant cadherin switch in MD-iPSCs directly
impaired neural rosette formation (Fig. 3), indicating the impor-
tance of the cadherin switch in the early neuronal differentiation.
Decreased number of neuronal cells and disrupted organization
of neurons were observed at early post-natal stage in ATP7A
knockout mice [13]. Therefore, our findings suggest that an abnor-
mal cadherin switch may give rise to neurological defects in Men-
kes disease patients. In many Menkes disease infants, it has been
reported that activities of copper-requiring enzymes such as dopa-
mine-b-hydroxlyase and peptidyl-glycine-a-amidating monooxy-
genase, which are closely related with neurologic pathologies, are
reduced [10,23]. Here, we could not measure the activity of cop-
per-requiring enzymes because MD-iPSCs did not differentiate into
neuronal cells. Like MD-iPSCs, copper-chelated WT-iPSCs showed
aberrant cadherin switch and impaired neuronal differentiation
during early differentiation (Fig. 4). These results imply that copper
is an essential element for normal cadherin switch in early neuro-
nal development.

This study may provide new insights to understand strategies to
treat Menkes disease. Even though the treatment of choice for
Menkes disease, currently copper–histidine replacement therapy,
has relieved neurologic complications in some patients, the effect
of the treatment on survival rate or long term neurologic morbidity
is inconclusive. A limitations of the copper treatment in Menkes
disease is thought to be due to blood–brain and blood–cerebrospi-
nal fluid barriers [16,24]. Although copper concentration level of
MD-iPSCs was similar to that of WT-iPSCs (Table 2), in this study,
MD-iPSCs showed aberrancies in the early neuronal differentiation
(Fig. 3). A paper reported that copper level of MD-fibroblasts was
increased in physiologic culture condition [25]. Although intracel-
lular location or delivery mechanism of excessive coppers in MD-
fibroblasts remains obscure [26], abnormal distribution of ATP7A
moelcules was observed in MD-fibroblasts and MD-iPSCs
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(Fig. 1E). From these results, it is likely that mutated ATP7A may
reduce intracellular utilization of copper molecules. Also, copper
chelation in WT-iPSCs resembled defective phenotypes of MD-iPS-
Cs during early neuronal differentiation. As a model, either copper
deficiency or dysfunction of ATP7A may impair neuronal develop-
ment in Menkes disease (Fig. 4F).

Aberrant cadherin transition and abnormal neural rosette for-
mation in MD-iPSCs observed in this study can explain severe neu-
rologic phenotypes that are poorly understood in Menkes disease
patients. Defects of early neuronal differentiation in MD-iPSCs
indirectly support that initial onset of Menkes disease may begin
from early neuronal development. In conclusion, this study pro-
vides a possible mechanism that can explain neurologic symptoms
in Menkes disease, especially in early neuronal development.
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